<<
>>

Корреляционный анализ

Корреляционный анализ является одним из наиболее широко используемых статистических методов, в частности и в рамках политической науки. При своей относительной простоте он может быть весьма полезен как для тестирования имеющихся гипотез, так и в поисковом исследовании, когда предположения о связях и взаимоза­висимостях только формируются.

Умение работать с данной статистической техникой важно и в силу того, что она используется как со­ставная часть более сложных, комплексных методов, в том числе факторного анализа, некоторых версий кластер-анализа и др.

Целью корреляционного анализа является измерение стати­стической взаимозависимости между двумя или более переменными. В слу­чае, если исследуется связь двух переменных, корреляционный анализ будет парным; если число переменных более двух — множественным.

Следует подчеркнуть, что переменные в корреляционном анализе как бы «равноправны» — они не делятся на зависимые и независимые (объясняемые и объясняющие). Мы рассматриваем именно взаимозависимость (взаимосвязь) переменных, а не влияние одной из них на другую.

Понятие «корреляционный анализ» фактически объединяет несколь­ко методов анализа статистической связи. В фокусе нашего внимания будет находиться наиболее распространенный из них — метод Пирсона (Pearson) . Его применение ограничено следующими условиями:

• переменные должны быть измерены, как минимум, на интер­вальном уровне;

• связь между переменными должна носить линейный характер, т.е. фиксироваться прямой линией. При наличии нелинейной связи корреляционный анализ Пирсона, скорее всего, не даст ее адекватно­го отображения;

Коэффициент Пирсона вычисляется по следующей формуле: ,

где Xj и у/ - значения двух переменных, х и у — их средние значения, sx и sy - их стан­дартные отклонения; п — количество пар значений.

• анализируемые переменные должны быть распределены нор­мально (или, во всяком случае, приближаться к нормальному распределению).

Корреляционный анализ фиксирует две характеристики статисти­ческой взаимосвязи между переменными:

• направленность связи. Как уже говорилось, по направленности связь бывает прямая (положительная) и обратная (отрицательная);

• интенсивность (плотность, теснота) связи. Эта характеристика определяет наши возможности по предсказанию значений одной пе­ременной на основании значений другой.

Чтобы более наглядно представить себе особенности корреляцион­ного анализа, обратимся к примеру из сферы исследования электоральных процессов. Предположим, мы проводим сравнительный ана­лиз электората двух политических партий либеральной ориентации — Союза правых сил и «Яблока». Наша задача — понять, существует ли общность электората СПС и «Яблока» в территориальном разрезе и насколько она значима. Для этого мы можем, например, взять данные электоральной статистики, характеризующие уровень поддержки этих партий, в разрезе данных избирательных комиссий субъектов Федера­ции. Проще говоря, мы смотрим на проценты, полученные СПС и «Яблоком» по регионам России. Ниже приводятся данные по выборам депутатов Государственной думы 1999 г. (количество регионов 88, по­скольку выборы в Чеченской Республике не проводились).

bgcolor=white>7.24
Случай Переменные (%)
«Яблоко» СПС
Республика Адыгея 4,63 3,92
Республика Алтай 3,38 5,40
Республика Башкортостан 3,95 6,04
Республика Бурятия 3,14 8,36
Республика Дагестан 0,39 1,22
Республика Ингушетия 2,89 0,38
Кабардино-Балкарская Республика 1,38 1,30
Республика Калмыкия 3,07 3,80
Карачаево-Черкесская Республика 4,17 2,94
Республика Карелия 9,66 10,25
Республика Коми 8,91 9,95
Республика Марий Эл 4,68
И т.д. (всего 88 случаев)

Здесь и далее результаты выборов взяты из (или рассчитаны на основе) официальных данных ЦИК РФ или ее территориальных подразделений.

Таким образом, у нас есть две переменные — «поддержка СПС в 1999 г.» и «поддержка "Яблока" в 1999 г.», простейшим образом операционализированные через процент голосов, поданных за эти партии, от числа избирателей, принявших участие в голосовании на федеральных парламентских выборах 1999 г. В качестве случаев выступают соответствующие данные, обобщенные на уровне реги­онов РФ.

Далее, в нашем распоряжении есть методический прием, кото­рый является одним из основных в статистике, — геометрическое представление. Геометрическим представлением называют представ­ление случая как точки в условном пространстве, формируемом «осями» — переменными. В нашем примере мы можем представить каждый регион как точку в двухмерном пространстве голосований за правые партии. Ось Сформирует признак «поддержка СПС», ось Г— «поддержка "Яблока"» (или наоборот; для корреляционного анализа это неважно в силу неразличения зависимых и независимых переменных). «Координатами» региона будут: по оси X— значение переменной «поддержка СПС» (процент, набранный в регионе дан­ной партией); по оси Г— значение переменной «поддержка "Ябло­ка"». Так, Республика Адыгея будет иметь координаты (3,92; 4,63), Республика Алтай — (3,38; 5,4) и т.д. Осуществив геометрическое представление всех случаев, мы получаем диаграмму рассеяния, или корреляционное поле.

Даже сугубо визуальный анализ диаграммы рассеяния наводит на мысль, что совокупность точек можно расположить вдоль некоторой условной прямой, называемой линией регрессии. Математически линия регрессии строится методом наименьших квадратов (высчитывается такое положение линии, при котором сумма квад­ратов расстояний от наблюдаемых точек до прямой является минимальной).

Интенсивность связи будет зависеть от того, насколько тесно точки (случаи) расположены вдоль линии регрессии. В коэффициен­те корреляции (обозначается г), который и является числовым ре­зультатом корреляционного анализа, плотность колеблется от 0 до 1. При этом чем ближе значение коэффициента к 1, тем плотнее связь; чем ближе значение к 0, тем связь слабее. Так, при г= 1 связь приобретает характер функциональной — все точки «ложатся» на одну прямую. При г = 0, фиксирующем полное отсутствие связи, построение линии регрессии становится невозможным. В нашем примере г = 0,62, что свидетельствует о наличии значимой статис­тической связи (подробнее об интерпретации коэффициента кор­реляции см. ниже).

Тип связи определяется наклоном линии регрессии. В коэффици­енте корреляции существует всего два значения типа связи: обратная (знак «-») и прямая (отсутствие знака, так как знак « + » традиционно не записывается). В нашем примере связь прямая. Соответственно, итоговый результат анализа 0,62.

Сегодня коэффициент корреляции Пирсона можно легко подсчи­тать с помощью всех компьютерных пакетов программ статистическо­го анализа (SPSS, Statistica, NCSS и др.) и даже в широко распростра­ненной программе Excel (надстройка «анализ данных»). Настоятельно рекомендуем пользоваться профессиональными пакетами, так как они позволяют визуально оценить корреляционное поле.

Почему важна визуальная оценка геометрического представления данных? Во-первых, мы должны убедиться, что связь линейна по форме, а здесь самый простой и эффективный метод — именно зри­тельная оценка. Напомним, что в случае ярко выраженной нелинейности связи вычисление коэффициента корреляции окажется беспо­лезным. Во-вторых, визуальная оценка позволяет найти в данных выбросы, т.е. нетипичные, резко выделяющиеся случаи.

Вернемся к нашему примеру с двумя партиями. Внимательно глядя на диаграмму рассеяния, мы замечаем по меньшей мере один нетипичный случай, лежащий явно в стороне от «общей магистра­ли», тенденции связи переменных. Это точка, представляющая дан­ные по Самарской области. Хотя и в меньшей степени, но тоже нетипично положение Томской, Нижегородской областей и Санкт- Петербурга.

Можно скорректировать данные анализа, удалив сильно отклоня­ющиеся наблюдения, т.е. произведя «чистку выбросов». В силу специ­фики вычисления линии регрессии, связанной с подсчетом суммы квадратов расстояний, даже единичный выброс может существенно исказить общую картину.

Удалив только один из 88 случаев — Самарскую область, — мы по­лучим значение коэффициента корреляции, отличное от полученно­го ранее: 0,73 по сравнению с 0,62. Плотность связи усилилась более чем на 0,1 — это весьма и весьма существенно. Избавившись отточек, соответствующих Санкт-Петербургу, Томской и Нижегородской об­ластям, получим еще более высокую плотность: 0,77.

Впрочем, чисткой выбросов не следует увлекаться: сокращая ко­личество случаев, мы понижаем общий уровень статистического доверия к полученным результатам. К сожалению, общепринятых кри­териев определения выбросов не существует, и здесь многое зависит от добросовестности исследователя. Лучший способ — содержательно понять, с чем связано наличие «выброса». Так, в нашем примере не­типичное положение Самарской области в признаковом простран­стве связано с тем, что в 1999 г. одним из активных лидеров правых был глава региона К. Титов. Соответственно, высокий результат СПС в регионе был обусловлен не только поддержкой партии как таковой, но и поддержкой губернатора.

Возвратимся к нашему исследованию. Мы выяснили, что голосо­вание за СПС и «Яблоко» довольно плотно коррелирует между собой на массиве данных, взятых в территориальном разрезе. Логично предположить, что в основе этой связи лежит некий фактор или комплекс факторов, который мы пока непосредственно не учитывали. Исследуя данные электоральной статистики разного уровня, нетрудно заметить, что обе партии демонстрируют лучшие результаты в городах и худшие — в сельских районах. Мы можем выдвинуть гипотезу, что од­ним из факторов, опосредующих связь между переменными, является уровень урбанизации территорий. Этот признак проще всего операционализировать через переменную «доля сельского населения» или «доля городского населения». Такая статистика существует по каждо­му субъекту Федерации.

Теперь в наших исходных данных появляется третья переменная — пусть это будет «доля сельского населения».

Случай Переменные (%)
«Яблоко» СПС Сел. нас.
Республика Адыгея 4,63 3,92 46
Республика Алтай 3,38 5,40 76
Республика Башкортостан 3,95 6,04 36
И т.д. (всего 88 случаев)

Чисто технически мы можем вычислять каждый парный коэффици­ент корреляции отдельно, но удобнее сразу получить матрицу интер­корреляций (матрицу парных корреляций). Матрица обладает диаго­нальной симметрией. В нашем случае она будет выглядеть следующим образом:

bgcolor=white>1
СПС «Яблоко» Сел. нас.
СПС 1 0,62 -0,61
«Яблоко» 0,62 1 -0,55
Гор. нас. -0,61 -0,55

Мы получили статистически значимые коэффициенты корреля­ции, подтверждающие выдвинутую нами гипотезу. Так, доля городского населения оказалась отрицательно связанной как с поддержкой СПС (г= -0,61), так и с поддержкой «Яблока» (г= -0,55). Мож­но заметить, что переменная «поддержка СПС» более чувствительна к фактору урбанизации по сравнению с переменной «поддержка "Яблока"».

Следует отметить, что после чистки выбросов (см. диаграммы рассеяния) связь была бы еще плотнее. Так, после удаления двух выбросов (Самарская области и Усть-Ордынский Бурятский АО) плотности коэффициента для СПС увеличивается до -0,65.

В этом примере мы уже начинаем мыслить в категориях влияния одной переменной на другую. Строго говоря, и это отмечено выше, корреляционный анализ не различает зависимых и независимых пе­ременных, фиксируя лишь их взаимную статистическую связь. В то же время содержательно мы понимаем, что именно принадлежность избирателей к городскому или сельскому населению влияет на их электоральный выбор, а никак не наоборот.

Интерпретация интенсивности связи

Мы подошли к проблеме интерпретации интенсивности связи на ос­нове значения коэффициента корреляции Пирсона. Определенного жесткого правила здесь не существует; скорее речь идет о совокупном опыте, накопленном в процессе статистических исследований. Тра­диционной можно считать следующую схему интерпретации данного коэффициента:

Значение Интерпретация
До 0,2 Очень слабая корреляция
До 0,5 Слабая корреляция
До 0,7 Средняя корреляция
До 0,9 Высокая корреляция
Свыше 0,9 Очень высокая корреляция

Необходимо отметить, что подобный вариант интерпретации плотности коэффициента корреляции применим в науках, в гораз­до большей степени опирающихся на количественные данные, не­жели наука политическая (например, в экономике). В эмпиричес­ких исследованиях политики довольно редко можно обнаружить г > 0,7; коэффициент же со значением 0,9 — случай просто уникаль­ный. Это связано прежде всего с особенностями мотивации поли­тического поведения — сложной, многофакторной, нередко ирра­циональной. Ясно, что такое сложное явление, как голосование за определенную политическую партию, не может целиком подчи­няться одному или даже двум факторам. Поэтому применительно к политическим исследованиям предлагаем несколько смягченную схему интерпретации:

• 0,4 > г> 0,3 — слабая корреляция;

• 0,6 > г> 0,4 — средняя корреляция;

• г> 0,7 — сильная корреляция.

Существует еще одна полезная процедура, позволяющая оце­нить значимость коэффициента корреляции в процессе вычисле­ния коэффициента детерминации, который представляет собой г, возведенный в квадрат (г 2). Смысл процедуры состоит в том, что при возведении в квадрат низкие коэффициенты потеряют «в весе»

гораздо сильнее, чем высокие. Так, 0,9 2 = 0,81 (значение снижается всего на 0,09); 0,5 2= 0,25 (здесь мы теряем уже половину значения); 0,3 2 = 0,09 (более чем трехкратная «потеря веса»). Когда речь идет о переменных, которые мы можем содержательно интерпретировать как «определяющие» и «определяемые», значение г2 будет показы­вать долю случаев, которые объясняет определяющая переменная.

В нашем примере коэффициент корреляции между переменными «поддержка СПС» и «доля сельского населения» после чистки вы­бросов составил —0,65. Коэффициент детерминации составляет соответственно -0,65 2 = 0,42. Несколько упрощая реальное положение дел, мы можем утверждать, что фактор урбанизации объясняет примерно 40% вариации переменной «голосование за СПС» по ре­гионам России в 1999 г.

Использование корреляционного анализа для выявления динамики связи переменных во времени

Корреляционный анализ можно использовать не только для обна­ружения связи между переменными, но и для оценки изменения этой связи во времени. Так, при изучении проблемы электоральной активности в регионах России необходимо было убедиться в том, что уровень активности избирателей является некой стабильной ха­рактеристикой электоральной культуры российских территорий. Имеются в виду, разумеется, не абсолютные показатели, которые существенно колеблются от выборов к выборам. Речь идет об устойчивости различий в уровне активности избирателей различных ре­гионов России.

Устойчивость пропорционального распределения явки по субъ­ектам Федерации достаточно просто проверяется методом корреля­ционного анализа. Приводимая ниже матрица парных корреляций электоральной активности на федеральных выборах 1991 — 2004 гг. довольно четко демонстрирует существующую тенденцию. Статис­тическая связь наиболее сильна внутри одного электорального цик­ла (1991-1993; 1995-1996; 1999-2000; 2003-2004), между двумя близкими по времени циклами она несколько слабеет, а по мере удаления электоральных циклов стремится к затуханию.


1991 1993 1995 19961 1999 2000 2003 2004
1991 1
1993 0,83 1
1995 0,52 0,66 1
1996 0,43 0,47 0,76 і
1999 0,14 0,26 0,61 0,56 1
2000 0,13 0,15 0,34 0,47 0,74 1
2003 0,04 0,13 0,36 0,38 0,81 0,75 1
2004 0,04 0,10 0,11 0,21 0,55 0,66 0,73 1

Отметим, что внутри каждого электорального цикла плотность корреляции превышает 0,7 (1991-1993: г= 0,83; 1995-1996: г= 0,76; 1999 — 2000: г = 0,74; 2003 — 2004: г= 0,73). На максимальной времен­ной дистанции — между президентскими и парламентскими выбора­ми 1991 — 1993 и 2003 — 2004 гг. — связи нет никакой, коэффициенты не превышают 0,1. В то же время затухание связи во времени проис­ходит медленно. Так, обращает на себя внимание наличие связи, хоть и неплотной, между уровнем электоральной активности на парла­ментских выборах 1995 и 2003 гг. (г= 0,36). Тот факт, что определен­ная преемственность обнаруживается на протяжении восьми лет, в те­чение которых происходит серьезнейшее «переформатирование» политического режима и системы федеративных отношений, свиде­тельствует о высокой устойчивости распределения уровня явки по российским регионам. Таким образом, мы имеем основания считать уровень активности/абсентеизма одной из составляющих электораль­ной культуры территорий.

Другие коэффициенты корреляции

Как было отмечено, коэффициент корреляции Пирсона является наиболее распространенным критерием связи интервальных и нормально распределенных переменных. Но что делать, если мы имеем переменные, существенно отклоняющиеся от нормального распределения? Или переменные не интервальные, но при этом являются метрическими (порядковые переменные с большим чис­лом категорий)?

гораздо сильнее, чем высокие. Так, 0,9 2= 0,81 (значение снижается всего на 0,09); 0,5 2= 0,25 (здесь мы теряем уже половину значения); 0,3 2= 0,09 (более чем трехкратная «потеря веса»). Когда речь идет о переменных, которые мы можем содержательно интерпретировать как «определяющие» и «определяемые», значение г2 будет показы­вать долю случаев, которые объясняет определяющая переменная.

В нашем примере коэффициент корреляции между переменными «поддержка СПС» и «доля сельского населения» после чистки вы­бросов составил -0,65. Коэффициент детерминации составляет соответственно -0,65 2= 0,42. Несколько упрощая реальное положе­ние дел, мы можем утверждать, что фактор урбанизации объясняет примерно 40% вариации переменной «голосование за СПС» по ре­гионам России в 1999 г.

Использование корреляционного анализа для выявления динамики связи переменных во времени

Корреляционный анализ можно использовать не только для обна­ружения связи между переменными, но и для оценки изменения этой связи во времени. Так, при изучении проблемы электоральной активности в регионах России необходимо было убедиться в том, что уровень активности избирателей является некой стабильной ха­рактеристикой электоральной культуры российских территорий. Имеются в виду, разумеется, не абсолютные показатели, которые существенно колеблются от выборов к выборам. Речь идет об устойчивости различий в уровне активности избирателей различных ре­гионов России.

Устойчивость пропорционального распределения явки по субъ­ектам Федерации достаточно просто проверяется методом корреля­ционного анализа. Приводимая ниже матрица парных корреляций электоральной активности на федеральных выборах 1991 — 2004 гг. довольно четко демонстрирует существующую тенденцию. Статис­тическая связь наиболее сильна внутри одного электорального цик­ла (1991-1993; 1995-1996; 1999-2000; 2003-2004), между двумя близкими по времени циклами она несколько слабеет, а по мере удаления электоральных циклов стремится к затуханию.


1991 1993 1995 1996 1999 2000 2003 2004
1991 1
1993 0,83 1
1995 0,52 0,66 1
1996 0,43 0,47 0,76 1
1999 0,14 0,26 0,61 0,56 1
2000 0,13 0,15 0,34 0,47 0,74 1
2003 0,04 0,13 0,36 0,38 0,81 0,75 1
2004 0,04 0,10 0,11 0,21 0,55 0,66 0,73 1

Отметим, что внутри каждого электорального цикла плотность корреляции превышает 0,7 (1991-1993: /- = 0,83; 1995-1996: г= 0,76; 1999—2000: г= 0,74; 2003 — 2004: г= 0,73). На максимальной времен­ной дистанции — между президентскими и парламентскими выборами 1991 — 1993 и 2003 — 2004 гг. — связи нет никакой, коэффициенты не превышают 0,1. В то же время затухание связи во времени происходит медленно. Так, обращает на себя внимание наличие связи, хоть и неплотной, между уровнем электоральной активности на парламентских выборах 1995 и 2003 гг. (г= 0,36). Тот факт, что определен­ная преемственность обнаруживается на протяжении восьми лет, в те­чение которых происходит серьезнейшее «переформатирование» политического режима и системы федеративных отношений, свиде­тельствует о высокой устойчивости распределения уровня явки по российским регионам. Таким образом, мы имеем основания считать уровень активности/абсентеизма одной из составляющих электораль­ной культуры территорий.

Другие коэффициенты корреляции

Как было отмечено, коэффициент корреляции Пирсона является наиболее распространенным критерием связи интервальных и нормально распределенных переменных. Но что делать, если мы имеем переменные, существенно отклоняющиеся от нормального распределения? Или переменные не интервальные, но при этом являются метрическими (порядковые переменные с большим чис­лом категорий)?

В этих ситуациях рекомендуется вычислять коэффициенты корре­ляции рангов, наиболее известным из которых является коэффициент Спирмана. Ранговая корреляция оперирует логикой порядкового уровня: принимаются во внимание не абсолютные значения, а отно­шения порядка (возрастания и убывания). В какой-то мере ранговую корреляцию можно считать усложненной версией расчета показателя гамма (у), который мы рассматривали в качестве стандартной меры связи порядковых переменных.

Коэффициент корреляции Спирмана колеблется в том же интер­вале, что и коэффициент Пирсона — от 0 до ± 1. Принципы интерпретации значений коэффициента также идентичны. Дополнительно стоит отметить, что ранговая корреляция не чувствительна к выбро­сам, так как не чувствительна к абсолютным значениям вообще.

<< | >>
Источник: Ахременко А.С.. Политический анализ и прогнозирование. 2006

Еще по теме Корреляционный анализ:

  1. ВНЕШНИЙ АНАЛИЗ И АНАЛИЗ ПОКУПАТЕЛЕЙ
  2. Технико-экономический анализ строительного проекта и анализ обеспечения по запрашиваемому строительному кредиту
  3. 58 МЕТОДЫ ПОЛИТИЧЕСКОГО АНАЛИЗА
  4. Анализ внешней среды
  5. Регрессионный анализ
  6. Методы политического анализа
  7. АНАЛИЗ ПОЛИТИЧЕСКИЙ
  8. 5.4. SWOT – анализ
  9. Дисперсионный анализ
  10. ПОЛИТИЧЕСКИЙ АНАЛИЗ
  11. СТРАТЕГИЧЕСКИЙ АНАЛИЗ
  12. Анализ
  13. Частные методы политического анализа
  14. Анализ инвестиций
  15. Факторный анализ
  16. Системный анализ
  17. Структура и отличительные черты общих методов политического анализа
  18. 71. ФУНДАМЕНТАЛЬНЫЙ АНАЛИЗ